Math 10A
Quiz 5; Friday, 7/13/2018
Time: 3 PM
Instructor: Roy Zhao
Name:

Circle True or False. (1 point for correct answer, 0 if incorrect)

1. True FALSE Every function has only one antiderivative.

Solution: There are infinitely many antiderivatives that differ by a constant.
2. True FALSE The only way to calculate the integral $\int_{0}^{1} x d x$ is by using an antiderivative of $x$.

Solution: We can also look at the graphical definition and use $1 / 2 b h$ to find the area of the triangle.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (4 points) Find $\frac{d}{d x} \int_{x}^{x^{2}} \sqrt{1-x} d x$.

Solution: Using FTC, this is $\sqrt{1-x^{2}} \cdot 2 x-\sqrt{1-x} \cdot 1=2 x \sqrt{1-x^{2}}-\sqrt{1-x}$.
(b) (3 points) Find $\int \sin ^{4}(x) \cos (x) d x$.

Solution: Let $u=\sin (x)$ so $d u=\cos (x) d x$. Then this integral is

$$
\int \sin ^{4}(x) \cos (x) d x=\int u^{4} d u=\frac{u^{5}}{5}+C=\frac{\sin ^{5}(x)}{5}+C .
$$

(c) (3 points) Find $\int \frac{\ln x}{x^{3}} d x$.

Solution: Integrate by parts with $u=\ln x, d v=\frac{1}{x^{3}} d x=x^{-3} d x$ to get $d u=\frac{1}{x} d x$ and $v=\frac{1}{-2 x^{2}}$ so

$$
\int \frac{\ln x}{x^{3}} d x=\frac{-\ln x}{2 x^{2}}-\int \frac{1}{-2 x^{3}} d x=\frac{-\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+C .
$$

